Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-He Miao and
 Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.017 \AA$
R factor $=0.063$
$w R$ factor $=0.142$
Data-to-parameter ratio $=11.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[[cis-diaqua(2,2'-bipyridine)-cadmium(II)]- μ-3-sulfonatobenzoato] monohydrate]

The title complex, $\left\{\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, which was obtained by hydrothermal synthesis, forms a onedimensional zigzag chain. The coordination polyhedron of the $\mathrm{Cd}^{\mathrm{II}}$ atom is a distorted octahedron completed by four O atoms from two water molecules and two 3-sulfonatobenzoate ligands, and two N atoms from 2,2'-bipyridine. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds give rise to a three-dimensional network.

Comment

Recently, sulfobenzoate metal complexes have received much attention owing to their interesting coordination modes and structural topologies (Fan \& Zhu, 2005; Ma et al., 2005). The 4sulfobenzoate (4-sb)/cadmium(II)/2,2'-bipyridine system under hydrothermal conditions produced a one-dimensional polymer containing a box unit, $\left[\mathrm{Cd}_{2}(4-\mathrm{sb})_{2}\left(2,2^{\prime} \text {-bipy }\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (II) (Yuan et al., 2001), in which the carboxylate group acts in a chelating-bridging mode. We present here the cadmium(II) complex with the 3 -sulfobenzoate (3-sb) ligand, (I), which forms a one-dimensional zigzag chain and is isostructural with the zinc(II) complex (Li et al., 2005). The copper(II) complex with 3 -sb and 2,2'-bipyridine has also been reported (Miao et al., 2005).

The $\mathrm{Cd}^{\mathrm{II}}$ atom in (I) has an octahedral geometry defined by two O atoms from two water molecules, two N atoms from 2,2'-bipyridine and two O -atom donors from two 3-sb ligands (Fig. 1 and Table 1). The coordination geometry of (I) is different from that of (II), in which the $\mathrm{Cd}^{\mathrm{II}}$ atom adopts a seven-coordinate geometry. The $\mathrm{Cd}-\mathrm{O}$ (carboxylate), $\mathrm{Cd}-\mathrm{N}$, and $\mathrm{Cd}-\mathrm{O}$ (sulfonate) distances in (I) are slightly shorter than those of (II). The dihedral angle between the planes of the 3sb ring and its carboxylate group is $11.5(16)^{\circ}$ and the dihedral angle between the two rings of the $2,2^{\prime}$-bipyridine ligand is 5.5 (6) ${ }^{\circ}$. The C7-O5 bond length [1.267 (14) \AA] in (I) is longer than the $\mathrm{C} 7-\mathrm{O} 4$ distance $[1.219$ (15) A], suggesting the more keto character for the $\mathrm{C} 7-\mathrm{O} 4$ bond. There is a hydrogen bond between the coordinated water molecule and
the uncoordinated carboxylate atom O4. The 3-sb ligands, cisarranged around each $\mathrm{Cd}^{\mathrm{II}}$ atom, bridge the $\mathrm{Cd}^{\mathrm{II}}$ atoms and lead to a one-dimensional zigzag chain (Fig. 2), in which the $\mathrm{Cd} \cdots \mathrm{Cd}$ separation by 3 -sb is 8.4860 (17) \AA. Extensive $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the chains generate a threedimensional hydrogen-bonding architecture (Table 2), which enhances the stability of the structure.

Experimental

A mixture of $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.266 \mathrm{~g}, 1 \mathrm{mmol})$, sodium hydrogen 3 -sulfobenzoate ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 2, 2'-bipyridine (0.158 g , 1 mmol) and water (15 ml) was sealed in a 30 ml stainless steel reactor with a Teflon liner, then heated at 423 K for 31 h . After cooling, the clear solution was set aside at room temperature for 4 d . Colorless needle-shaped crystals of (I) were formed and these were filtered off.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=522.79$
Monoclinic, $C c$
$a=8.0131(16) \AA$
$b=29.833(6) \AA$
$c=8.4860(17) \AA$
$\beta=110.914(3)^{\circ}$
$V=1895.0(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.789, T_{\text {max }}=0.962$
6663 measured reflections
$D_{x}=1.832 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1377
reflections
$\theta=2.7-20.6^{\circ}$
$\mu=1.31 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Needle, colorless
$0.19 \times 0.04 \times 0.03 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.142$
$S=0.99$
3294 reflections
280 parameters
H atoms treated by a mixture of independent and constrained refinement

3294 independent reflections
2603 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-35 \rightarrow 35$
$l=-10 \rightarrow 10$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0758 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.90 \mathrm{e}^{-3}
\end{gathered}
$$

Absolute structure: Flack (1983),
1606 Friedel pairs
Flack parameter: -0.01 (6)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.346(8)$	$\mathrm{Cd} 1-\mathrm{O} 7$	$2.287(8)$
$\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.174(8)$	$\mathrm{Cd} 1-\mathrm{N} 1$	$2.256(9)$
$\mathrm{Cd} 1-\mathrm{O} 6$	$2.347(9)$	$\mathrm{Cd} 1-\mathrm{N} 2$	$2.307(9)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$102.5(3)$	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 1$	$84.1(3)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 7$	$93.7(3)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 1$	$96.4(3)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 7$	$162.3(3)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 6$	$89.7(3)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 2$	$174.0(3)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 6$	$95.1(3)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$71.5(3)$	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 6$	$91.9(3)$
$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{N} 2$	$92.1(3)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{O} 6$	$91.7(3)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	$82.6(3)$	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 6$	$171.2(3)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1$	$90.9(3)$		

[^1]

Figure 1
ORTEP-3 (Farrugia, 1997) diagram of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (i) $1+x, y, 1+z$].

Figure 2
A view of the one-dimensional zigzag chain of (I). Hydrogen bonds are drawn as dashed lines and solvent molecules have been omitted for clarity.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 8^{\text {ii }}$	0.85 (5)	1.84 (3)	2.669 (13)	166 (12)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.86 (8)	1.99 (5)	2.747 (12)	149 (9)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.85 (4)	1.90 (5)	2.655 (11)	149 (9)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 8^{\text {iii }}$	0.85 (3)	2.48 (10)	3.073 (13)	128 (10)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 4$	0.85 (11)	1.97 (7)	2.761 (13)	154 (15)
O8-H8B $\cdots \mathrm{O}^{\text {iv }}$	0.85 (10)	2.35 (9)	3.185 (13)	168 (14)

Symmetry codes: (i) $x+1, y, z+1$; (ii) $x+1, y, z$; (iii) $x+1,-y+2, z+\frac{1}{2}$; (iv) $x-1,-y+2, z-\frac{1}{2}$.

All H atoms bonded to C atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in a difference Fourier map and refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and with fixed $U_{\text {iso }}(\mathrm{H})$ of $0.08 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

metal-organic papers

The authors thank the Qufu Normal University for the diffraction measurements, the National Natural Science Foundation of China (grant No. 50073019), and the Analytical and Measurement Fund of Zhejiang Province.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R. \& Zhu, L.-G. (2005). Chin. J. Chem . 23, 1292-1296.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Li, W.-G., Wang, Z.-W., Cai, Y., Xu, Z.-J., Li, Y.-Z. \& Zheng, H.-G. (2005). Chin. J. Inorg. Chem. 21, 1857-1860.
Ma, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. \& Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807-812.

Miao, X.-H., Xiao, H.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m2561-m2563. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yuan, R.-X., Xiong, R.-G., Xie, Y.-L., You, X.-Z., Peng, S.-M. \& Lee, G.-H. (2001). Inorg. Chem. Commun. 4, 384-387.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (i) $x+1, y, z+1$.

